宠文网 > 策略思维 > 第7章不可预测性

第7章不可预测性

书籍名:《策略思维》    作者:奈尔伯夫
字体大小:超大 | | 中大 | | 中小 | 超小
上一章目录下一章

1986年的全国棒球联赛冠军争夺战在纽约大都会队与休斯敦星象队之间展开,依靠击球手莱恩·戴克斯特拉(Len Dykstra)在第九局面对投手戴夫·史密斯(Dave Smith)的第二投击出的一个本垒打,纽约大都会队赢得了关键的一仗。赛后,两位球员都被问到究竟发生了什么事。[1]戴克斯特拉说:“他在第一投投了一个快球,我击球出界。当时我有一种奇怪的想法,觉得他接下来会投一个下坠球*,他确实那样做了。这个球的路线我看得非常准确,我的出手也非常准确。”而史密斯的说法则是:“只能归结为一点,即这是一个糟糕的投球选择。”换言之,他也认为戴克斯特拉可能猜到,因为第一投是一个快球,接下来史密斯可能改变投球速度。“如果我再投一次会怎么样?当然是(又)一个快球。”
*用中指与无名指夹住而投出的球,通常会在飞行过程中急速下坠。——译者注
假如日后出现同样的情形,史密斯是不是应该采取再投一个快球的策略呢?当然不是。击球手可以看穿史密斯这一层次的思考方式,早就等着迎接一个快球。这个时候,史密斯应该转向另一个层次的思考方式,投出一个下坠球。击球手可以看穿并利用投手的一切有规则的思考与行动方式,反过来也一样。对双方而言,惟一合理的行动方针是力求做到不可预测。①
遇到这些情况,策略思维的一个经典错误在于,认为只要将自己摆在对手的位置,就能预测对手的行动。在戴维·哈伯斯塔姆(David Halberstam)的著作《1949年夏天》(The Summer of' 49)里,当作者描述17岁的特德· 威廉斯(Ted Williams)初次体会策略思维的重要意义的时候,我们就看到这样的错误。[2]
和其他许多年轻球员一样,威廉斯也对变化球感到一筹莫展。他一直应付不来。有一次,一名投手用一个曲线球使他出局。威廉斯对自己的表现极为恼火,一路小跑回到外场休息区自己的座位上。圣迭戈的一名投手曾是大联盟球员,他向威廉斯大喊了一声:“嘿,小伙子,他究竟是怎么把你打出去的?" “一个该死的慢曲线球。”威廉斯答道。“你能不能击中他的快球?”投手问。“没问题。”威廉斯答道。“你觉得下一次他会怎样对付你?”投手问。出现了一个短暂的沉默。特德·威廉斯从没想过应该怎样对付他自己——那是投手们思考的问题。“一个曲线球。”他答道。“嘿,小伙子,”投手说,“为什么你不回到场边等待下一次机会呢?”威廉斯照办了,结果击出了一个漂亮的本垒打。由此展开了一项针对投手思维的长达25年的研究。
显然,这个投手没有认识到不可预测的必要性,当然,威廉斯也没有认识到,这是因为,假如威廉斯想过应该怎样向自己投球,他就不会在他意识到自己早有准备的时候仍然投出一个曲线球!本章将阐述在双方都想压倒对方的时候会出现什么情况。即便你的猜测不能始终正确,至少也可以看出其中的概率。
① 要想做到不可预测,投手必须随机选择一系列精确的投球。他不能投出不精确的球。一个不精确的投手当然不可预测,因为他自己都不晓得球会飞向何处。若是缺少精确性,投手就没办法决定什么时候应该投什么类型的球,以及不同类型的球应该保持怎样的相对频率。精确而不可预测的投球的一个绝妙例子是不旋转球。由于这种球几乎不会旋转,球面上的缝合线会在空中飞行过程中引发相当突然的路线变化,结果没有人可以很有把握地预测它的落点。不过,话又说回来,没有几个投手可以投出好的不旋转球。
正确估计并回应不可预测性不仅在棒球场上非常有用,在其他领域也是一样。只要一方喜欢准确地预料将发生的事情,而另一方却竭力避免被预测,不可预测性就会变成策略的一个关键因素。美国国税局想要审查那些逃税者,而逃税者竭力想避免遭到审查。在孩子们中间,大孩子通常不喜欢小孩子当自己的“跟屁虫”,小孩子却喜欢跟在大孩子后面。入侵的军队想方设法企图选出一个绝妙的攻击点,发动一场出其不意的袭击,守军则想方设法企图确定进攻发生的地点,并在那里布下重兵,严阵以待。
在夜总会、饭店、服装和艺术方面的引领时尚者希望保持与众不同的地位,普通大众却期盼能跟他们呆在一起。最终,所谓“人时”的场所会被发现。不过,到了那时,明星们早就有了新的聚会处。这有助于解释夜总会的生命周期为什么这样短暂。一家夜总会一旦取得成功,就会引来无数好奇的捧场客。这会把引领时尚者赶跑,使他们不得不另找一个新的消遣去处。正如约吉·贝拉*(Yogi Berra)所说:“那地方实在太挤了,谁也不想去。”
*美国著名棒球选手兼球队经理。——译者注
尽管棒球投手的投球选择或者国税局确定谁该接受审核也许不可预测,却还是有一些规则可以指导这类选择。一定数量的不可预测性不应该完全听天由命。实际上,选择投这种球而非那种球的概率,或者选择这人而非那人进行审核的概率,可以通过整个博弈的细节精确地确定下来。“虽然这实在疯狂,却也不是毫无办法。”下面我们就来解释这个办法。
1 .怎样使输赢机会相等?
你们当中有许多人一定还记得小学时玩过的一个游戏,叫做“一、二、三射击”或者“手指配对”。在这个比赛中,其中一个选手选择“偶数”,另外一个选手则得到“奇数”。数到三的时候,两个选手必须同时伸出一个或者两个手指。假如手指的总数是偶数,就算“偶数”选手赢;假如手指的总数是奇数,就算“奇数”选手赢。假设输者给赢者1美元。我们可以通过计算得出与策略选择相关的输赢图表(如图7-1 所示)。
图7-1 偶数者和奇数者的得益
假如两位选手的行动不是随机的,这个博弈就没有均衡点。设想一下,假如“奇数”选手一定出一个指头,“偶数”选手就一定会用一个指头奉陪到底。现在,逻辑开始逆转。既然“奇数”选手确信他的对手一定会出一个指头,他就会改出两个指头。这将使“偶数”选手转而报以两个指头。这么一来,“奇数”选手就会出一个指头。于是我们又回到了开始的地方,这种循环推理看来简直是没完没了。
检验随机性是不是必要的一个简单办法,是考察让对手在出招之前看到你的行动究竟有没有害处。假如随机性必不可少,先行者就会处于不利地位。设想一下,在“一、二、三射击”的游戏里,你若是先行会出现什么情况?你将永远是输家。
并非任何随机性都会奏效。假设“奇数”选手有75%的时间选择出一个指头,另外25%的时间选择出两个指头。那么,“偶数”选手若是一直选择出一个指头,就能在75%的时间取胜,平均每场游戏赢得0.75xl+0.25x(-1)=0.50 美元。类似地,“偶数”选手若是选择出两个指头,平均每场游戏就会输掉0.50 美元。因此,“偶数”选手会选择一直出一个指头。不过,“奇数”选手应该选择出两个指头,而不是前面提到的75:25 的混合策略。在双方不断揣摩对方策略的连续多轮的较量中,这种混合策略将会一败涂地。
换言之,随机性存在一种均衡模式,必须加以计算。在这个例子中,整个局面是如此对称,以至于各个选手的均衡混合策略应该都是50:50 。我们这就验证一下:假如“奇数”选手出一个指头和两个指头的机会是各一半,那么,“偶数”选手无论选择出一个还是两个指头,平均每场游戏将会赢得0.50xl+0.50x(-1)=0美元。因此,假如他的策略也是50:50,那么他的平均所得就是0美元。同样的证明反过来也适用。因此,两个50:50混合策略对彼此都是最佳选择,它们合起来就是一个均衡。这一解决方案的名称叫做“混合策略”均衡,反映了个人随机混合自己的策略的必要性。
若是换了其他更一般的情况,这个均衡混合的对称性就不会显得如此明显,但仍有一些简单规则可以用来计算。我们以网球比赛为例子说明这些规则。
2 .有人要打网球吗?
网球的首要策略教训之一,就是不到最后一瞬不要选定一个方向。否则,对手可以利用对你的猜测,将球击向另一方。不过,哪怕你看不出对手的移动,预测一下也是大有好处的。假如发球者总是瞄准接球者的反手,接球者就会早有准备,开始向那个方向移动,从而可以更好地将球打回去。因此,发球者应该努力使自己的发球变得不可预测,不让接球者准确预计他的目标。相反,接球者启动的时候不能完全倾向于奔向这一方或者那一方。与手指配对游戏不同,网球选手不应该将不可预测性等同为输赢机会相等。参与者可以通过系统地偏向一边而改善自己的表现,只不过这样做的时候应该确保对方不能预见。
为了具体阐述这个问题,我们设想有这么一对具备特殊技巧的网球选手。接球者的正手稍微强一些。假如他的预计正确,他的正手回球有90%的机会获得成功,而反手回球的成功率只有60%。当然,假如他跑向一方而对方发出的球飞向另一方,那么,回球的质量就会大打折扣:假如他跑向反手一方,而对方发出的球飞向他的正手一方,他能及时转向而成功回球的概率只有30% ;反过来,他的成功率只有20%。我们可以用图7-2 显示上述情况。
发球者一心要使对方回球成功的概率越低越好;接球者的目标恰恰相反。比赛开始前,两位选手要选择自己的作战计划。他们各自的最佳策略是什么?
假如发球者永远瞄准对手的正手,接球者就会预计到球会朝自己的正手而来,从而有90%的概率回球成功。假如发球者永远瞄准对手的反手,接球者也能预计到球会朝自己的反手而来,从而有60%的概率回球成功。
图7-2 接球者成功回球的概率
发球者只有打乱自己的瞄准目标才能降低接球者回球成功的概率。这么一来,他会让接球者永远处于猜测之中,也就没有办法尽享准确预测的优势了。
假设发球者在每次发球前都会在自己的脑子里投掷一枚假想的硬币,根据硬币出现正面或者反面决定自己的发球应该瞄准对手的正手还是反手。现在我们考察接球者若是向正手方移动会出现什么情况。这一猜测准确的概率只有50%。猜测准确的时候,正手回球的成功概率是90% ;而猜测出错的时候,接球者及时转向而成功回球的概率只有20%。因此,他的整体成功概率是1/2*90% +1/2*20%=55 %。通过类似的计算可以知道,若是向反手方移动,他的整体成功概率是1/2*60%+1/2*30%=45%。
在发球者采取50:50 混合策略的前提下,接球者若是从自己的角度出发,就能选出最佳回应策略。他应该向正手方向移动,这么做,成功回球的概率达到55%。而在发球者看来,这个成绩与他永远将球发向一方得到的结果相比已经有所改善。对比一下,假如发球者永远将球发向一方,分别是接球者的正手方和反手方,那么,接球者的成功回球概率分别为90%和60%。
另一个显而易见的问题是,发球者的最佳混合策略是什么?要回答这个间题,我们可将不同的混合策略的结果列成一个图表(如图7 -3所示)。发球者瞄准对方正手方向的概率是一条从O 到100%的水平线。对于所有这些混合策略,图中有两条线,一条显示接球者准备向正手方移动的成功回球概率,另一条则显示他准备向反手方移动的成功回球概率。举个例子:假如接球者准备向正手方移动,概率为0的向正手发球的策略(即100%地向反手发球的策略)就能使接球者的成功回球概率维持在20%的低水平,而100%地向正手发球的策略则会使接球者的成功回球概率达到90%。接球者的成功回球概率从一端直线上升到另一端。
图7-3
两条直线交于一点,在这一点上发球者只有40%的时间将球发向对方正手方。在交点的左边,接球者若是预计对方会将球发向反手方,那么他的成功回球概率就会提高;而在右边,他若是预计对方会将球发向正手方,成功回球概率也会提高。①
① 注意,一旦发球者选择向接球者正手方向发球的概率超过40% (不是50% ) ,接球者如果将赌注押在正手方向,就能取得更好的成绩。哪怕发球者选择向接球者反手方向发球的概率还是较大,但他向两个方向发球的技巧却不相等。
向正手和向反手发球维持在40:60的混合策略,是惟一一个不会让接球者用上述方法占便宜的选择。只有选择这种混合策略,接球者无论选择防守正手还是反手,其成功回球概率都是一样的。两种情况都会留给接球者48%的成功回球概率。发球者若是采取其他任何一种混合策略,只要接球者善加利用,就能使自己的成功回球概率沿着图中的两条直线上升到交点之上,也就是超过48%。因此,40%的时间瞄准对方的正手就是发球者的最佳策略。
混合策略的确切比例是由基本行动配对而成的4种情况确定的。对于拥有不同的绝对优势和相对优势的选手,这里的数字90、60、30 和20会相应发生变化,而他们的最佳混合策略也会随之不同。我们很快就会发现,这样一些变化可能导致一些令人惊讶的结果。这里的关键在于,你必须通过估计你真正参加的博弈的4种基本情况,确定自己的最佳混合策略。
这里有一条捷径,使你不必画出前面提到的图表也可以计算出均衡策略。这个简单的算术方法归功于J.D.威廉斯。[3]回到基本情况的表格。对于发球者,如果选择瞄准对方正手的策略,就要观察对方选择两种不同的回应方式之一会使结果发生什么变化;我们得到90-30=60 。假设他瞄准对方反手发球,再做同样的计算,可得60-20=40 。将上述数字倒过来排列,就能得到最佳混合策略中采用这两种策略的概率。① 因此,发球者应该按照40:60的比例瞄准对方的正手和反手。
现在我们改从接球者的角度考察同一场比赛。图7-4显示了他的不同选择会有什么不同的结果。假如发球者瞄准他的反手,那么,他回
① 我们可以用一点代数知识验证这个结果。假如纵列选手的得失情况如下图所示,左列对右列的均衡比例为(D-B):( A-C)。纵列选手选择左列的概率是p,那么,无论横行选手选择上或者下都没有关系;pA+(1-p)B=pC十1-P)D 意味着p /( 1-p )=(D-B )/(A-C) ,如前所述。由于横行选手的得失是纵列选手的得失的负数,他的均衡混合策略就是上行对下行,即(D-C):(A-B)。
球的时候向反手方移动就能得到60%的成功回球概率,而向正手方移动的成功回球概率只有20%。从O到100%改变向正手方移动的概率,就得到一条和上述两点相交的直线。与前面的分析类似,若是发球者瞄准对手的正手,我们就得到一条从30%上升到90%的直线。这两条直线交于一点,在这一点,接球者向正手方移动的概率为30% ,无论发球者选择瞄准哪一方,他的成功回球概率始终维持在48%。任何其他混合策略都会让发球者占便宜,使他得以选择更好的策略,将接球者的成功回球概率进一步降低到48%以下。
图7-4 接球手向正手移动的概率(% )
此外,我们也可以采用威廉斯的方法。表格显示了接球者两种不同选择可能导致什么不同结果。若向正手方移动,我们得到90-20=70 ; 向反手方移动,我们得到60-30=30。将这两个数字倒过来排列就得到最佳混合策略的比例:30%的时间准备向正手方移动,70%的时间准备向反手方移动。
你可能已经注意到,从两位选手的不同角度计算最佳混合策略,会得到一个有趣的共同点:两次计算会得到同样的成功回球概率,即48%。接球者若采用自己的最佳混合策略,就能将发球者的成功概率拉低到发球者采用自己的最佳混合策略所能达到的成功概率。这并非巧合,而是两个选手的利益严格对立的所有博弈的一个共同点。这个结果称为最小最大定理,由前普林斯顿数学家约翰·冯·诺伊曼(John von Nrumann)与奥斯卡·摩根斯顿(Oscar Morgenstern)创立。这一定理指出,在零和博弈里,参与者的利益严格相反(一人所得等于另一人所失),每个参与者尽量使对手的最大收益最小化,而他的对手则努力使自己的最小收益最大化。他们这样做的时候,会出现一个令人惊讶的结果,即最大收益的最小值(最小最大收益)等于最小收益的最大值(最大最小收益)。双方都没办法改善自己的地位,因此这些策略形成这个博弈的一个均衡。
我们以网球比赛为例,并假设每个选手只有两种策略,以此证明这一定理。假如发球者想努力使接球者的最大成功率最小化,他应该在假设接球者已经正确预计到他的混合策略且会做出最优回应的基础上确定自己的行动。也就是说,接球者的成功率将是图7-5中两条直线的最大值。这个最大值的最小值出现在两条直线的相交处,该点的成功率为48%。
图7-5发球手攻正手的概率(% )
现在我们从接球者的角度考察这个问题:他要努力使自己的最小收益最大化。如图7-6所示,假如接球者一半时间向正手方移动,一半时间向反手方移动,他的新的收益曲线就是原来两条直线的平均值,以点线显示。由于这条直线是向上延伸的,其最小值永远出现在左端,该点的成功率为40%。无论接球者向两方移动的比例是多少,这条直线一定经过成功率为48%的那一点,这是因为发球者可以选择采用40:60的混合策略。假如这条直线出现任何倾斜,那么,它的一端一定落在48%以下。只有在接球者的混合策略为30:70的时候,这条直线才会变成一条水平直线,最小值变成48%。因此,最大值的最小值等于最小值的最大值——48%。
图7-6发球手攻正手的概率(%)
最小——最大定理的普遍证明相当复杂,不过,其结论却很有用,应该记住。假如你想知道的只不过是一个选手之得或者另一个选手之失,你只要计算其中一个选手的最佳混合策略并得出结果就行了。
我们的其他工具,比如威廉斯的方法和上述图表,能够很好地解决一切只有两个选手参加且他们各有两个策略的零和博弈。不幸的是,这些工具并不适用于任何非零和博弈,也不适用于选手数目超过两个或者他们拥有的策略数目超过两个的零和博弈。经济学家和数学家发明了更加普遍的技巧,比如线性规划方法,可以找出最复杂的零和博弈的均衡策略。虽然这些技巧超出了本书的范围,我们还是可以利用其中得出的结果。
所有混合策略的均衡具有一个共同点:每个参与者并不在意自己在均衡点的任何具体策略。一旦有必要采取混合策略,找出你自己的均衡混合策略的途径就在于使别人对他们自己的具体行动无所谓。虽然这听上去像是一种倒退,其实不然,因为它正好符合零和博弈的随机化动机:你想阻止别人利用你的有规则的行为占你的便宜。假如他们确实倾向于采取某一种特别的行动,从你的角度观察,这只能表示他们选择了最糟糕的方针。
说到这里,我们已经解释了采取混合或者随机策略的好处,以及这么做的策略必要性。基本要点在于,运用偶然性防止别人利用你的有规则的行为占你的便宜。将这一原理用于实践则是一个更微妙的间题。下面五个部分可以看做是运用混合策略的迷你指南。
3 .为什么你应该选择正确的混合策略?
假如真能发现某个参与者打算采取一种行动方针,而这种行动方针并非其均衡随机混合策略,另一个参与者就可以利用这一点占他的便宜。在网球比赛的例子中,当发球者采取自己的均衡策略,按照40:60的比例选择攻击对方正手方和反手方时,接球者的成功率为48%。如果发球者采取其他比例,接球者的成功率就会上升。举个例子:假如发球者很傻,决定把所有的球都发向对方较弱的反手方,接球者由于早有预料,其成功率将会增至60%。一般来说,假如接球者认识发球者,确切了解他有什么癖好,他就能相应采取行动。不过,这么做永远存在一种危险,即发球者可能是一个更出色的策略家,好比台球桌旁的骗子,懂得在无关紧要的时候装出只会采用糟糕策略的傻样,引诱对方上当,然后在关键时刻发挥本色,打接球者一个措手不及。一旦接球者以为看穿了对方的惯用手法,而放弃自己的均衡混合策略,一心要占对方便宜,就会上发球者的当。发球者乍看起来很傻的混合策略可能只是一个陷阱。只有采取自己的均衡混合策略才能避免这一危险。
与正确的混合比例一样重要的是随机性的本质。假如发球者向接球者正手方发出4个球,然后转向反手方发出6个球,接着又向正手方发4个球,再向反手方发6个球,如此循环,确实可以达到正确的混合比例。不过,这是一种有规则的行为,接球者很快就能洞察其中奥妙。他可以相应做出正确的移动,成功率因此上升为(4/10)90%+(6/10)60%=72%。发球者若想取得最大效果,必须使每一次发球都不可预测。前面故事里提到的棒球选手戴克斯特拉与史密斯,似乎没意识到这个原则。
4 .为什么不能依赖对手的随机化?
假如一个参与者选择的是他的最佳混合策略,那么,无论对手采取什么样的策略,他的成功率都是一样的。假设你是网球比赛例子里的接球者,而发球者已经选择了他的最佳混合策略,即40:60的混合策略。那么,无论你向正手方还是反手方移动,又或是时而正手方,时而反手方,你的成功回球率都是48%。意识到这一点,你可能打算免掉计算自己的最佳混合策略的麻烦,只随便选定一种行动,并指望对手选择他的最佳混合策略。问题在于,除非你选择自己的最佳混合策略,否则你的对手就没有动机选择他自己的最佳混合策略。举个例子:假如你选择向正手方移动,他会转向攻击你的反手方。为什么你应该选择自己的最佳混合策略?理由就是迫使对方继续使用他的最佳混合策略。
5 .你的技巧变化了,你的最佳混合策略怎样变化?
假设接球者努力改进自己的反手回球技巧,反手方的成功回球率从60%上升为65%。我们可以相应修改用于计算他的最佳混合策略的图表。请看图7-7。我们注意到,接球者向正手方移动的比例从30%上升为33.3% ,而整体成功回球率也从48%上升为50%。
图7-7 接球手向正手移动的概率(% )
随着接球者的技巧不断改进,他的成功率自然也会提高。不过,出人意料的是,这一提高了的成功率是由减少使用改进了的反手技巧取得的。在 第1章的妙手传说中,我们说过这样的事情有可能发生;现在我们就来解释一下。
原因在于两位参与者的策略的相互影响。当接球者更善于反手回球,发球者就会多向他的正手方发球(向正手发球的比率达到43%, 而不是原来的40%)。为了适应这个变化,接球者也会多向正手方移动。反手技巧改进了,正手技巧的威力也因此释放出来。好比拉里·伯德的例子,随着他的左手投篮得分率上升,对方防守他的策略不得不发生同样的改变,结果反而给了他更多机会右手投篮。
同样的情况还有一个例子:假设接球者刻苦训练,提高自己的灵活性,从而他在向正手方移动后迅速转向接住反手球的准确度提高了。他对付反手球的成功率从20%上升为25%。和前面提到的情况一样,他向正手方移动的机会也从30%上升到31.6% (若用威廉斯的方法,向正手方和反手方移动的比例从原来的30:70上升为35:65)。接球者多向正手方移动的原因在于他在这边的技巧改善了。相应地,发球者将会减少攻击对方的反手方的次数,以此减少对方的得益。
6 .怎样随机行动?
假如有人告诉你,你应该以相等的比例随机投出下坠球和快球,你该怎么办?一个办法是从1到10中随机挑选出一个数字。假如这个数字是5或在5以下,你就投快球;假如这个数字是6或在6以上,你就投下坠球。当然了,这在简化你的问题的方向上只走了一步而已。你怎样才能从1到10的十个数字里随机挑选出一个呢?
我们从一个更简单的问题开始,即写下连续投掷一枚硬币可能得出的结果。假如这个序列的确是一个随机序列,谁要是打算猜测你究竟写的是正面还是反面,他猜中的机会平均不会超过50%。不过,写下这么一个“随机”序列比你想像的要困难得多。
心理学家已经发现,人们往往会忘记这样一个事实,即投掷硬币翻出正面之后再投掷一次,这时翻出正面的可能性与翻出反面的可能性相等;这么一来,他们连续猜测的时候就会不停地从正面跳到反面,很少出现连续把宝押在正面的情况。假如一次公平的硬币投掷连续30次翻出正面,第31次投掷翻出正面的机会还是跟翻出反面的机会相等。根本没有“正面已经翻完”这回事。同样,在六合彩中,上周的号码在本周再次成为得奖号码的机会,跟其他任何号码相等。为避免一不小心在随机性里加人规律因素,我们需要一个更加客观或者更加独立的机制。
一个诀窍在于选择某种固定的规则,一但要是一个秘密的而且足够复杂的规则,人们很难破解。举个例子:看看我们的句子的长度。假如一个句子包含奇数个单词,把它当做硬币的正面;假如一个句子包含偶数个单词,把它当做反面。这就变成一个很好的随机数字发生器。回过头来计算前面的10个句子,我们得到反、正、正、反、正、反、正、正、正、反。假如我们这本书不够轻便,没关系,其实我们随时随地都带着一些随机序列。比如朋友和亲属的出生日期的序列。若出生日期是偶数,当做正面;若是奇数,当做反面。也可以看你的手表的秒针。假如你的手表不准,别人没办法知道现在秒针究竟处于什么位置。对于必须使自己的混合策略比例维持在50:50的棒球投手,我们的建议是,每投一个球,先瞅一眼自己的手表。假如秒针指向一个偶数,投一个快球;假如指向奇数,投一个下坠球。实际上,秒针可以帮助你获得任何混合策略比例。比如,现在你要用40%的时间投快球而用另外60%的时间投下坠球,那么,请选择在秒针落在1-24之间的时候投快球,落在25-60之间的时候投下坠球。
7 .独一无二的情况
至此为此,上述所有推理过程都适用于橄榄球、篮球或者网球这样的比赛,在这些比赛中,相同的情况多次出现,而且每场比赛对垒的都是相同的参与者。于是,我们就有时间和机会看出任何有规则的行为,并相应采取行动。反过来,很重要的一点,在于避免一切会被对方占便宜的模式,坚持自己的最佳混合策略。不过,若是遇到只比一次的比赛,又该怎么办?
考察一场战役攻守双方的选择。这种情况通常都是独一无二的,彼此都不能从对方以前的行动中得出任何规律。但是,派出间谍侦察的可能性会引出一个随机选择的案例。假如你选择了一个具体的行动方针,却被敌人发现了你的打算,他就能选择对你最不利的行动方针。你希望让他大吃一惊;最稳妥的办法就是让你自己大吃一惊。你应该留出尽可能长的时间考虑各种可能的方案,直到最后一刻才通过一种不可预测的从而也是不可侦察的方法做出你的选择。这个方法包含的相对比例应该符合这样的要求:敌人就算发现了这个比例,也不能以此占据上风。不过,这其实就是我们前面已经讲过的最佳混合策略。
最后给你一个警告。即便在你采用了自己的最佳混合策略的时候,你还是有可能得到相当糟糕的结果。即便棒球投手戴夫· 史密斯真的不可预测,有时候莱恩· 戴克斯特拉还是可以碰巧猜中他会投什么球,将球击出场外。而在橄榄球比赛中,第三次死球且距离底线只剩一码的时候,稳扎稳打的选择是中路推进;不过,重要的是投出一个出其不意的球,迫使守方不敢轻举妄动。一且这样的传球得逞,球迷和体育解说员们会为选择这一策略而欢呼雀跃,赞扬教练是一个天才。假如传球失败,教练就会遭到众人批评:他怎么可以把宝押在一记长传之上,而不是选择稳扎稳打的中路推进?
评判这名教练的策略的时机,是在他将这个策略用于任何特定情况之前。教练应该公告天下,说混合策略至关重要;中路推进仍然是一个稳扎稳打的选择,其原因恰恰在于部分防守力量一定会被那个代价巨大的长传吸引过去。不过,我们怀疑,哪怕这名教练真会在比赛之前将这番理论通过所有的报纸和电视频道公告天下,只要他仍会在比赛里选择一个长传且不幸落败,他还是免不了遭到众人批评,就跟他此前根本没费心教给公众有关博弈论的知识差不多。
8 .谎言的安全措施
假如你采用了自己的最佳混合策略,那么,另一个参与者能不能发现这一点无关紧要,只要他不能提前发现你通过自己的随机机制为某个具体情况确定的具体行动方针。对于你的随机策略,他无计可施,占不了你的便宜。均衡策略恰恰就是用来防止对方通过这样的方式占你的便宜。不过,假如出于某种原因,你没有采取自己的最佳混合策略,这时,保密就是关键。泄露这一信息会让你付出巨大代价。与此同时,你也有同样的机会使对手误解你的计划。
1944年6月,盟军筹备诺曼底登陆的时候,想方设法让敌人相信攻击点会在法国北部的港口加来。最具创意的一招,是把一个德国间谍变成一个双重间谍,却又不是一般的双重间谍。英国人费尽心机让德国人听说自己的间谍叛变了,却又不让他们知道这个消息是有意泄露的。为了使德国人知道自己作为一个双重间谍多么(不)可信,这个家伙向德国发回了一些最整脚的信息。德国人发现这些信息只要按照字面意思反过来理解就对了。这是关键的一步。当这名双重间谍报告说盟军将在诺曼底登陆时,他说的是实话,偏偏德国.人反过来理解,认为这进一步确认了加来才是攻击点。这个策略还有一个优点,即盟军登陆之后,德国人再也摸不透他们的间谍是不是一个真正的双重间谍。他一直是德国仅有的正确信息来源。随着他在德国人那边的可信度逐步恢复,英国人可以通过他发出错误信息,引诱德国人上钩。[4]
这个故事的问题在于,德国人本来应该可以预计到英国人的策略,并分析得知他们的间谍有可能叛变。硬用混合或者随机策略的时候,你不是每一次都能愚弄对手,也不是任何一个特定时候都能让他上当。你能得到的最好结果是让他们不断猜测,且有时候可以引诱他们上当。在这方面,当你知道正在和你交谈的人出于自己的利益会有误导你的想法的时候,最佳选择可能是忽略他所说的一切,而不是按照字面意思理解或者断定应该反过来理解。
以下是关于商界两名竞争对手在华沙火车站狭路相逢的故事。
“你去哪儿?”一个人问。
“明斯克。”另一个人答。
“明斯克?你还真有种!我知道,你之所以告诉我说你要去明斯克,是因为你想让我相信你要去平斯克。可你没想到我当真知道你其实是要去明斯克。那么,你为什么要对我说谎呢?" [5]
行动确实胜过言语一筹。通过观察你的对手的行动,你就能判断他想跟你说的事情究竟有几分可以相信。从我们列举的例子中可以看到,' 你不能单单按照字面意思理解对手所说的事情。但这并不表示在你努力识破他的真实意图时,应该忽略他的行动。一方按照怎样的比例混合其均衡策略,关键取决于他的得益。因此,观察一个参与者的行动可以提供一些有关正在使用的混合比例的信息,同时这种观察也是一个很有价值的证据,有助于推断对手的得益。扑克游戏的叫牌过程就是一个很好的例子。
扑克玩家都知道采用混合策略的必要性。约翰·麦克唐纳(John McDonald)有这样的建议:“扑克玩家应该隐蔽在自相矛盾的面具后面。好的扑克玩家必须避免一成不变的策略,随机行动,偶尔还要走过头,违反正确策略的基本原则。”[6]一个“谨小慎微”的玩家难得大胜一回;没有人会跟他加码。他可能赢得许多小赌注,最后却不可避免会成为一个输家。一个经常虚张声势的“大大咧咧”的玩家,总会有人向他摊牌,于是也免不了失败的下场。最佳策略是将这两种策略混合使用。
假设你已经知道,一个经常遇到的扑克对手遇到手风顺的时候,会有2/3的机会加码,1/3的机会摊牌。假如手风不顺,则会有2/3的机会退出,1/3的机会加码。(一般而言,你在虚张声势的时候摊牌并不明智,因为你没有取胜的牌面。)于是,你可以画出图7-8,显示他采取各种行动的概率。
在他出牌之前,你相信他拿到一手好牌和一手坏牌的可能性是相等的。由于他的混合概率取决于他拿到什么牌,你就能从他的叫牌方式中得到更多信息。假如你看见他退出,你可以肯定他拿到了一手坏牌。假如他摊牌,你就知道他拿到了一手好牌。但是这两种情形下,赌博的过程已经结束。假如他加码,他拿到一手好牌的概率就是2:1 。虽然他的叫牌不一定精确反映他拿到了什么牌,但你得到的信息还是会比刚刚开始玩牌的时候多。假如听到对方加码,你就可以将他拿到一手好牌的概率从1/2提高为2/3。①
① 在听见对方叫牌的条件下,估算概率采用了一种称为贝叶斯法则的数学技巧。在听到对方叫“X”,的条件下,对方有一手好牌的概率等于对方拿到一手好牌而又叫X的概率除以他叫“X”的总概率所得的商。于是,听见对方叫“退出”就表示他必然拿到一手坏牌,因为一个拿到一手好牌的人绝对不会“退出”。听见对方叫“摊牌”则表示他拿到一手好牌,因为玩家只会在拿到一手好牌的时候这么做。若是听见对方叫“加码”,计算就会稍微复杂一点:玩家拿到一手好牌且加码的概率等于(1/2)(2/3)=1/3,而玩家拿到一手坏牌且加码,即虚张声势的概率为(1/2)(1/3)=1/6。由此可知,听到对方叫“加码”的总概率等于1/3+1/6=1/2。根据贝叶斯法则,在听见对方叫“加码”的条件下,对方拿到一手好牌的概率等于对方拿到一手好牌且叫“加码”的概率除以他叫“加码”的总概率所得的商,即(1/3)/(1/2)=2/3。
图7-8
9 .出人意料
到目前为止,我们还只是将随机策略的应用集中在参与者利益严格对立的博弈上。在某种程度上显得更出人意料的还是找出随机行动的均衡的可能性,即便博弈的参与者存在共同利益。遇到这种情况,混合自己的策略可能导致各方得到更差的结果。不过,仅仅是结果更差并不表示这些策略就不是一个均衡:均衡是一种描述,不是一项指示。
混合自己的策略的原因来自合作失败。这个问题只出现在缺乏一个独一无二的均衡的时候。举个例子:两个人打电话聊天,说到一半线路中断,他们并不总是清楚谁应该再拨过去。由于缺乏沟通的能力,两个参与者不知道将会出现怎样的均衡。用不那么精确的话来说,随机化的均衡是在合作均衡之间寻求一种妥协的方式之一。下面的故事将会解释这种妥协的本质。
德拉(Della)与吉姆(Jim)属于大家会在小说里看到的那种夫妻;确切地说就是在欧·亨利(O.Henry)小说《麦琪的礼物》(The Gift of the Magi)里的那对夫妻。“谁也不会计算”他们彼此的爱情。他们彼此都愿意——甚至迫切希望——为对方作出任何牺牲,换取一件真正配得起对方的圣诞礼物。德拉愿意卖掉自己的头发,给吉姆买一条表链,配他从祖先那儿继承下来的怀表,而吉姆则愿意卖掉这块怀表,买一把梳子,配德拉的漂亮长发。
假如他们真的非常了解对方,他们就该意识到,为了给对方买一份礼物,两人都有可能卖掉他或者她的心爱之物,结果将是一个悲剧性的错误。德拉应该三思而行,好好想想留下自己的长发等待吉姆的礼物会不会更好。同样,吉姆也不要考虑卖掉自己的怀表。当然,假如他们两人都能克制自己,谁也不送礼物,又会变成另外一种错误。这个故事可以用一个博弈表示(如图7-9 所示)。
图7-9德拉与吉姆的得失1
尽管这对夫妻的利益在很大程度上是一致的,但他们的策略还是会相互影响。对于任何一方,两种错误都会得到坏的结果。为了具体说明这一点,我们给这个坏结果打0分。而在一个送礼物而另一个收礼物的两种结果中,假设各方均认为献出(2分)胜过接受(1分)。
德拉保住自己的头发而吉姆卖掉他的怀表是一种可能的均衡;各人的策略都是对对方策略的最佳回应。不过,若情况是德拉卖掉她的头发而吉姆保住自己的怀表,这也是一个可能的均衡。会不会存在一种彼此了解的共识,从而可在两种均衡中做出取舍呢?由于“出人意料”是礼物的一个重要特点,因此他们不会提前商量以达成共识。
混合策略有助于保住这个“出人意料”的特点,可要付出代价。不难发现,各人都用2/3的机会选择献出而以1/3的机会选择接受,也能达到一个均衡。假设德拉选择了这么一个混合策略。如果吉姆卖掉了他的怀表,德拉有1/3的机会保住自己的头发(2分),2/3的机会卖掉自己的头发(0分)。平均结果为2/3 分。同样可以算出,如果吉姆保住自己的怀表,平均结果也是2/3 分。因此,吉姆没有任何明确的理由,要在原来的两种均衡中做出取舍,或者采取任何混合策略。再次提醒一下,德拉的最佳混合策略的作用,是使吉姆愿意继续混合自己的策略,反之亦然。
出错的概率相当大:9次里面有4次,这对夫妻会发现对方卖掉了自己买礼物回来相配的心爱之物(正如欧·亨利的小说提到的那样),有1次大家都得不到礼物。由于存在这些错误,平均得分(两人各得2/3分)还比不上原来两种均衡得到的结果,在这两种均衡当中,各有一方送礼物而另一方收礼物(施者得2分,受者得1分)。这和网球比赛的例子不同,在网球比赛的例子里,各方确实可以通过混合自己的策略提高成功率。
为什么会有这种区别?网球是一个零和博弈,选手们的利益严格相悖。他们在独立选择混合策略的比例时会取得较好的结果。而在《麦琪的礼物》里,两夫妻的利益在很大程度上是结合在一起的。因此,他们必须协调他们混合策略的比例。他们应该投掷一枚硬币,按照硬币翻出的结果决定谁该送礼物,谁该收礼物。这对夫妻有一个小小的利益矛盾:吉姆喜欢左上角的结果,而德拉喜欢右下角的结果。经过协调的混合策略可以使他们达成一个妥协,化解这个矛盾。若用一枚硬币决定谁送礼物而谁收礼物,那么各人的平均结果就都会变成1.5分。当然,“出人意料”这一元素也不存在了。

10 .得势不饶人
到目前为止,我们提到的混合策略的例子几乎全都来自体育竞技场。为什么现实世界里见不到几个将随机行为应用到商界里去的例子呢?首先,假如企业文化说的是努力保持对结果的控制权,就不大可能推广让概率决定结果的主张。出了问题之后更是如此,因为随机选择行动的时候总会出现偶然间题。有些人认为,一名橄榄球教练应该不时假装踢一个悬空球,以此迫使守方不敢轻举妄动;但在商界,类似的冒险策略一旦遭到失败,你就可能被炒了鱿鱼。不过,关键并不在于冒险策略总能成功,而在于冒险策略可以避免出现固定模式,并防止别人轻易预测自己的行动。
折扣券是运用混合策略改善企业业绩的一个例子。公司使用折扣券来建立自己的市场份额,想法是为了吸引新的消费者,而不仅仅是向现有消费者提供折扣。假如几个竞争者同时提供折扣券,消费者就没有特别的动机转投其他牌子。相反,他们满足于自己现在使用的牌子,并接受该公司提供的折扣。只有在一家公司提供折扣券而其他公司不提供的时候,消费者才会被提供折扣券的公司吸引过去,尝试这个新牌子。
诸如可口可乐与百事可乐这样的竞争对手之间的折扣券策略博弈,其实就跟吉姆和德拉的合作问题极为类似。两家公司都想成为提供折扣券的公司。但是,假如他们同时这么做,折扣券就不能发挥原来设想的作用,两家的结局甚至会比原来更糟。一个解决方案是遵守一种可预测的模式,每隔半年提供一次折扣券,几个竞争者轮流提供折扣券。这个方案的问题在于,当可口可乐预计到百事可乐快要提供折扣券的时候,它就应该抢先一步提供折扣券。要避免他人抢占先机,惟一途径就是保持“出人意料”的元素,而这一元素来自一个随机化的策略。①
① 一些有力的统计证据表明,可口可乐和百事可乐达成了某种发放折扣券的合作方案。据《60分钟时事》(“60M Minutes”)报道,曾经有一段长达52个星期的时间,可口可乐和百事可乐分别发放了26期折扣券,其间没有出现两家同时发放折扣券的现象。若是没有事先约定,两家独立行事,那么,它们各自发放26期折扣券而不会出现同时发放现象的概率是1/495918532948104——即1000 亿次也不会出现1次。
在商界还有其他例子可以说明我们必须避免陷人一个固定模式,防止对手轻易预测我们的行动。一些航空公司向愿意在最后一分钟买票的乘客提供优惠机票。不过,这些公司不会告诉你究竟还剩下多少座位,而这个数字本来有助于你估计成功得到机票的机会有多大。假如最后一分钟所剩机票的数量变得更容易预测,那么乘客利用这一点占便宜的可能性就会大得多,航空公司也会因此失去更多本来愿意购买全价机票的乘客。
在商界,随机策略的最广泛用途在于以较低的监管成本促使人们遵守规则。这已经应用于从税收审计、毒品测试到付费停车计价器的许多领域,同时解释了惩罚不一定要和罪行吻合的原因。
由付费停车计价器记录的违章停车的典型罚金是正常收费标准的许多倍。设想一下,假如正常收费标准是每小时1美元,按照每小时1. 01美元的标准进行处罚能不能让大家从此变得服服帖帖呢?有可能,条件是交通警察一定可以在你每次停车而又没向计价器投钱的时候逮住你。这样一种严格的监管方式可能变得代价高昂。交通警察的薪水将成为首要议题;此外,为了保证警方说到做到,必须经常检测收费机,这笔费用可能也是巨大的。
监管当局有一个同样管用、代价又小的策略,就是提高罚金数目,同时放松监管力度。比如,罚金若是高达每小时25美元,这时候,哪怕25次违章只有1次会被逮住,已经足够让你乖乖付费停车了。一支更小型的警察队伍就能胜任这项工作,而收取的罚金也更接近弥补检测成本的水平。
这是又一个证明随机策略的用处的例子。在某些方面,这个例子与网球比赛的例子类似,但在其他方面存在区别。我们再次看到,当局选择一种随机策略的原因在于这么做胜过任何有规则的行动:完全不监管意味着浪费稀缺的停车空间,而100%的监管的代价又高得难以承受。不过,处于另一方的停车者不一定也有一个随机策略。实际上,当局希望通过提高侦察的概率和罚金数目,规劝大家遵守停车规则。
随机毒品测试与监管付费停车有许多相同点。若让每位职员每天都接受毒品测试,从而确定是不是有人用了毒品,这种做法不仅浪费时间,费用高昂,而且也没有必要。随机测试不仅可以查出瘾君子,还能阻止其他人由于觉得好玩而以身试“毒”。这么做和监管付费停车的例子一样,虽然查出瘾君子的可能性不大,但罚金很高。国税局的审查策略的一个问题在于,与被逮住的机会相比,罚金数目其实很小。假如监管属于随机性质,我们必须定出一个超过罪行本身的惩罚。规则在于,预期的惩罚应该与罪行相称,而这种心理预期应该将被逮住的概率考虑在内。
那些希望击败监管当局的人,也可以利用随机策略为自己谋利。他们可以将真正的罪行隐藏在许许多多虚假警报或罪行里,从而使监管者的注意力和资源大大分散,以至于不能有效发挥作用。举个例子:防空体系必须保证摧毁几乎百分之百的人侵导弹。对进攻方而言,击败防空体系的一个办法是用假导弹掩护真导弹。一枚假导弹的成本远远低于一枚真导弹。除非防守方真的可以百分之百地识别真导弹和假导弹,否则防守方就不得不开动防空体系摧毁所有入侵导弹,不管它们是真是假。
发射哑弹的做法起源于第二次世界大战,那时人们其实不是有意设计假导弹,而是为了解决质量控制问题。正如约翰·麦克唐纳在他的著作《扑克、商业与战争中的策略》(Strategy in Poker,Business and war)中所说,“销毁生产过程中出现的次品炮弹的成本很高。有人想到一个主意,说生产出来的哑弹可以随机发射出去。对方的军队指挥官担不起任凭一枚延时起爆炮弹落在自己阵地的风险,而他也辨别不了哪些是不会爆炸的哑弹,哪些是真会爆炸的延时起爆炮弹。面对真真假假的炮弹,他不敢大意,只好竭尽全力摧毁发射过来的每一枚炮弹。”·
本来,防守方的成本与可能被击落的导弹相比只是九牛一毛,但攻击方也有办法使防守成本高到难以承受的地步。实际上,这个问题正是卷入“星球大战”的各方所面对的挑战之一;他们可能找不到任何解决方案。
11 .案例分析之七:霸王行动
1944年,盟军正筹划一次解放欧洲的行动,而纳粹决心抵挡这一进攻。首次登陆有两个可能的地点:诺曼底海滩和加来港。若守军不堪一击,登陆必然取得成功。因此,德国人一定要将重兵布在其中一个地点。进攻加来的难度很大,却也更具战略价值。因为加来更接近盟军在法国、比利时乃至德国本土的终极目标。
假设成功的概率如图7-10所示。
得失结果用0~100分表示。盟军成功登陆加来得100分,成功登陆诺曼底得80分,无论在哪个地方失手,都得O分(德国人的得失结果正好与此相反)。
假设你同时扮演盟军最高统帅艾森豪威尔(Eisenhower)将军以及德国在法国的海岸防卫指挥官、陆军元帅隆美尔(Rommel) ,那么,你会选择什么策略?

图7-10 盟军成功的概率
案例讨论
首先,将成功概率的信息和成功的分值综合起来,画出一个平均得分图(如图7-11 所示)。图中列出的分值是从盟军的角度得出的分值;德国人的得分可以看做这些数字的负数;因为双方的利益严格相悖。
图7-11 盟军得分图
基本的策略当中并不存在一个均衡,我们必须转向混合策略。用威廉斯的方法,盟军选择诺曼底或者加来登陆的机会应为(100-20):( 80-60),即4:1,而德国人在诺曼底或者加来布防的机会应为(80-20):(100-60) ,即3:2 。盟军若是采取自己的最佳混合策略,平均得分为68。
我们选用的概率和分值可能存在部分合理的成分,也可能似是而非,但在分析这些问题的时候不大可能做到完全精确或教条主义。现在就让我们把上述结果同实际情况做个比较。回首当年,我们知道,盟军的混合策略高度倾向于诺曼底,而这正是他们的实际选择。而在德国人这边,策略倾向也差不多。因此,以下情况也就不会那么出人意料了:德国决策层被盟军的双重间谍诡计、不同级别指挥官的意见分歧以及一些纯粹的坏运气(比如命运攸关之际主帅隆美尔偏偏不在前线)搞得晕头转向。结果,他们终于没能在D日(大规模进攻开始日,D-Day)下午盟军进攻诺曼底并且眼看得手的时候,将全部后备部队投入诺曼底前线,却仍然相信一场更大规模的偷袭已经瞄准加来。即便如此,争夺奥马哈滩的决战还是一度陷入拉锯状态。不过,盟军终于夺取了奥马哈滩,巩固了他们突入诺曼底的阵地。接下来的故事也就不用我们重复了。
第2部分结语
1 .历史注记
博弈论是由普林斯顿伟大的学者约翰·冯·诺伊曼首先提出的。早年,研究重点放在纯粹冲突的博弈(零和博弈)上。其他博弈则被当做一种合作方式进行考察,即参与者应该共同选择和实施他们的行动。这些方法不能涵盖现实当中的大多数博弈,在这些博弈里,人们各自选择行动,但他们之间的关系并非纯粹冲突。对于同时存在冲突与合作的一般博弈,我们提到的均衡概念归功于约翰·纳什。托马斯·谢林则扩展了相继行动博弈的分析,建立了策略行动的概念。
2 .深入阅读
开先河的著作读起来总是兴味盎然。怀着这种想法,我们推荐约翰·冯·诺伊曼与摩根斯顿的《博弈论与经济行为》(Theory of Games and Economic Behavior,普林斯顿大学出版社,1947) ,尽管其中的数学原理可能让人感到吃力。谢林的《冲突策略》(哈佛大学出版社,1960) 超出了开先河著作的范围,直到今天仍然可以为我们带来有益的指点和思考。
若谈到一部有意思的零和博弈著作,J.D.威廉斯的《完全策略大师》(修订版,麦格劳-希尔出版公司,1966 至今独领风骚。关于前谢林时代的博弈论,最透彻的高度数学化的解释来自邓肯·卢斯( Duncan Luce)与霍华德·拉法(Howard Raiffa)的《博弈与决策》( Games and Decisions ,威利出版公司,1957)。
在博弈论的其他一般论著里,莫顿·戴维斯(Morton Davis)的《博弈论:非技术的导论》(Game Theory:A Nontechnical Introduction , 第2版,基础书局,1983)可能是最容易读下去的著作。马丁·舒比克( Martin Shubik)的《社会科学中的博弈论》 (Game Theory in the Social Sciences ,麻省理工学院出版社,1982)则是一部更详细的、数学内容也更高深的著作。
还有一些很有价值的著作,讨论的是将博弈论应用于具体的情况。在政治领域,值得推荐的有史蒂文·布拉姆斯的《博弈论与政治》(自由出版社,1979)、威廉·赖克(William Riker)的《政治操纵的艺术》(The Art of Political Manipulation,耶鲁大学出版社,1986)以及彼得·奥德舒克(Peter Ordeshook)的更具技术意味的《博弈论与政治理论》(Game Theory and Political Theory ,剑桥大学出版社,1986)。至于商界方面的应用,迈克尔·波特(Michael Porter)的《竞争战略》(自由出版社,1982)以及霍华德· 拉法(Howard Raiffa)的《谈判的艺术与科学》(The Art and Science of Negotiation ,哈佛大学出版社,1982)是两个很好的资源。
3 .我们的遗漏责任
我们一直将零和博弈与非零和博弈的区别含糊带过。实际上,零和博弈的均衡有一些特点并不适用于非零和博弈,因此,这方面的严格阐述应该分别进行。
我们简化了许多案例,使每个参与者只有两个策略可以选择。这么做的前提是基本概念仍然可以大致进行阐述,不会出现重大遗漏。多数情况下,引入更多策略只有纯粹的计算方面的意义。举个例子:3个或3个以上的基本策略的随机化,可以交给一个简单的计算机程序完成。这里有一个新观点:均衡处只有一个子集的策略可能用得上(使用的概率为正数)。关于这一点,参见上述卢斯与拉法的著作。
我们一直忽略了称为“合作博弈”的内容,这种博弈的参与者共同选择和实施他们的行动,得出“核”或者“沙普利值”这样的均衡。我们这么做的原因在于,我们认为任何一个合作都应该作为一个非合作博弈的均衡结果出现,而在非合作博弈里,行动是由参与者独自决定的。这就是说,个人违背任何协议的动机应该可以辨认出来,并成为他们策略选择的一部分。不过,有兴趣的读者可以从戴维斯、卢斯与拉法以及舒比克的著作里找到合作博弈的处理方法。
4 .从这里开始
第3部分着眼于建立几类策略互动的概念与技巧。其中包括讨价还价、投票选举、边缘政策以及激励设计。我们将再次通过例子和案例分析阐述策略原理,并以注释的形式向有兴趣进一步了解某些题目的读者列出推荐书目。


第3部分
上一章目录下一章
本站所有书籍来自会员自由发布,本站只负责整理,均不承担任何法律责任,如有侵权或违规等行为请联系我们。